
Our theoretical analysis demonstrated potential benefits in noise robustness, 
latent space exploitation and data augmentation after which empirical analysis 
validated these advantages in practice for low amounts of training data. 

As such, our dicoding paradigm:

• Noise robustness. We model noise as independent additive Gaussian 
with covariance Σ = σ2I: yi = f(zi) + εi; yj = f(zj) + εj, where εi, εj in N(0, σ2I) are 
independent noise. The difference δyij = yi - yj retains this additive struc-
ture: δyij = δzij + δεij, where δεij = εi - εj has twice the variance 2σ2I of the in-
dividual terms. That is, as the data increases quadratically, the uncorre-
lated noise increases linearly.

• Latent space exploitation. We assume that the GAN generator’s 
latent space is an isotropic Euclidean metric space with orthogonal dis-
entangled axes spanning independent perceptual factors which ena-
bles seamless geometric manipulations. In this idealized setting, latent 
difference vectors δzij = zi - zj precisely capture stimulus differences δxij = 
xi - xj without interactions.

• Improved sample efficiency. We assume that the latent space exhib-
its proportionality; the magnitude of latent difference vectors δzij scales 
linearly with stimulus semantics δxij. Crucially, this implies that doubling 
the training set from n to 2n not only expands the size of the training set 
but also augments the volume spanned by the latent differences, pro-
viding broader coverage of potential variations within the latent space. 
The consequence is a more robust and effective training process as the 
model learns from a more diverse set of examples.
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Get more from less: Differential neural decoding for 
effective reconstruction from limited training data
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• Neural decoding refers to the computational problem of classifying or recon-
structing perceptual stimuli, X, based on stimulus-evoked neural activity, y. 

Problem:
• Biological sensory processing consists of highly nonlinear transformations
• Modeling requires extensive datasets of stimulus and neural response pairs
• Neural responses exhibit trial-to-trial variability and noise (to identical stimuli)

Solution:
• Generative adversarial networks (GANs) can synthesize photorealistic images 
from latent codes, z, [1] which can be used in neural decoding as intermediate 
feature representation between neural activity and reconstruction,     [2, 3]

• We propose a new framework for DIfferential neural deCODING (dicoding) 
that reconstructs stimuli from relative differences between pairs of neural re-
sponses instead of directly predicting single latents from single responses

Given a dataset [3] of neural responses, y, to corresponding stimuli, X, and their 
underlying latents, z, we compute all pairwise differences, Δyij = yi - yj and Δyij 
= yj - yi, resulting in a quadratic expansion of the training dataset. We then train 
a decoder model to map these response differences to latent differences, Δzij.

T H E O R E T I C A L  A N A L Y S I S

Decoding performance, in terms of cosine similarity between predicted and target latents, as 
a function of number of training examples. Dicoding outperformed regular decoding for low 
samples sizes. Their performances converged as the training dataset size increased (~800).
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The predicted latents by the decoders trained on 200, 400, 600, and 800 training faces and 
images were fed to their respective GAN generator for the reconstruction of the correspond-
ing images. Notably, dicoding reconstructed higher-quality images for limited sample sizes.
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Perceptual similarity using five activations of VGG16 for face recognition [4] in the case of 
faces and VGG16 for object recognition [5] in the case of natural images affirmed the superior 
performance of dicoding for low sample sizes.
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• successfully mapped response differences to latent offsets which effectively   
encoded meaningful directions in latent space, leveraging the inherent seman-
tic geometry thereof
• is poised to help enable the next generation of neural interfaces and prosthetic 
devices through more effective utilization of limited biological data and mean-
ingful semantic transformations grounded in statistics of real-world data


